
SDS 335: Version Control with Git

Joe Allen

Oct 26, 2021

CONTENTS

1 The Basics of Version Control 3

2 Set up Git / GitHub 5
2.1 Git . 5
2.2 EXERCISE . 6
2.3 GitHub . 6

3 Get Started with a New Repository 9
3.1 EXERCISE . 10
3.2 Tracking Changes . 10
3.3 Commit Changes to the Repo . 11
3.4 EXERCISE . 12

4 Review the Project History 13

5 Add to the Repo 15
5.1 EXERCISE . 16
5.2 Check for File Changes . 16
5.3 EXERCISE . 17
5.4 Directories in Git . 17

6 Restore Old Versions of Files 19

7 Link a Local Repository to GitHub 21
7.1 Clone the Repository . 22

8 Collaborate with Others 23
8.1 Fork . 23
8.2 Branch . 23
8.3 Tag . 23
8.4 Pull Request / Merge Request . 25
8.5 Other Considerations . 25

9 Additional Resources 27

i

ii

SDS 335: Version Control with Git

Table of Contents

• Version Control with Git

– The Basics of Version Control

– Set up Git / GitHub

– Get Started with a New Repository

– Review the Project History

– Add to the Repo

– Restore Old Versions of Files

– Link a Local Repository to GitHub

– Collaborate with Others

– Additional Resources

This material contains a short introduction to the version control system Git. Of the numerous version control systems
available (Git, Subversion, CVS, Mercurial, etc.), Git is the most popular. What it lacks in user-friendliness it makes
up for in good documentation. We generally find that it is great for:

• Collaborating with others on code

• Supporting multiple concurrent versions (branches)

• Tagging releases or snapshots in time

• Restoring previous versions of files

• Intuitive web platforms available

After working through this material, students should be able to:

• Create a new Git repository hosted on GitHub

• Clone a repository, commit and push changes to the repository

• Track the history of changes in files in a Git repository

• Work collaboratively with others on the content in a Git repository

• Demonstrate a basic understanding of forking, branching, and tags

CONTENTS 1

SDS 335: Version Control with Git

2 CONTENTS

CHAPTER

ONE

THE BASICS OF VERSION CONTROL

Version control systems start with a base version of the document and then record changes you make each step of the
way. You can think of it as a recording of your progress: you can rewind to start at the base document and play back
each change you made, eventually arriving at your more recent version.

Fig. 1: Changes are saved sequentially.

Once you think of changes as separate from the document itself, you can then think about “playing back” different sets
of changes on the base document, ultimately resulting in different versions of that document. For example, two users
can make independent sets of changes on the same document.

Fig. 2: Different versions can be saved.

Unless there are conflicts, you can even incorporate two sets of changes into the same base document.

Fig. 3: Multiple versions can be merged.

A version control system is a tool that keeps track of these changes for us, effectively creating different versions of our
files. It allows us to decide which changes will be made to the next version (each record of these changes is called a
“commit”, and keeps useful metadata about them. The complete history of commits for a particular project and their
metadata make up a “repository”. Repositories can be kept in sync across different computers, facilitating collaboration
among different people.

3

SDS 335: Version Control with Git

4 Chapter 1. The Basics of Version Control

CHAPTER

TWO

SET UP GIT / GITHUB

2.1 Git

When we use Git on a new machine for the first time, we need to configure a few things. Below are a few examples of
configurations we will set as we get started with Git:

• Our name and email address,

• Default main branch name,

• And that we want to use these settings globally (i.e. for every project).

Git comes with a nice command line interface to help configure, and to navigate and perform all of the version control
features. The command line interface takes the form git verb, where verb is what we actually want to do.

To get started with an example, log on to Frontera and check which version of Git is in your PATH.

[local]$ ssh username@frontera.tacc.utexas.edu # use your account
(enter password)
(enter token)

[fta]$ which git
/opt/apps/git/2.24.1/bin/git
[fta]$ git version
git version 2.24.1

Since you are the only one who can log in to Frontera with your username, it is safe and reasonable to configure Git
globally with your name and e-mail address:

[fta]$ git config --global user.name "Joe Allen"
[fta]$ git config --global user.email "wallen@tacc.utexas.edu"
[fta]$ git config --global init.defaultBranch main

Please use your own name and email address. This user name and email will be associated with your subsequent Git
activity, which means that any changes pushed to GitHub, Bitbucket, GitLab or another Git host server in the future
will include this information.

5

https://github.com/
https://bitbucket.org/
https://gitlab.com/

SDS 335: Version Control with Git

2.2 EXERCISE

• Type git help on the command line and take a few minutes to read the help text.

2.3 GitHub

GitHub is a web platform where you can host and share Git repositories (“repos”). Repositories can be public or private.
Much of what we will do with this section requires you to have a GitHub account. First sign up for a GitHub account:

Fig. 1: Click on ‘Sign up’ in the top right

GitHub has recently gotten more serious about security. Simple username / password authentication is no longer
accepted from the Git command line. The easiest way to authenticate with GitHub via the command line is with SSH
keys. Once logged in to GitHub, click on your avatar in the top right corner, choose “Settings”, and choose “SSH and
GPG keys”:

Fig. 2: Click on your avatar in the top right, then ‘Settings’

Back on Frontera, you will need to grab a copy of your SSH public key and paste it into the GitHub key manager. To
find the public key on Frontera, execute:

[fta]$ cat ~/.ssh/id_rsa.pub
ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAwhWa3/RZwaTrAqXE/VnUsTry3N9MCGXPvRLRj+R
TtbANqFg00VR0bAvKTQVd0c3tGmx3Hmbg58JRd0og49HHC3U0v+CiFw6UFk/8S8bJC9VITjkHwy+

(continues on next page)

6 Chapter 2. Set up Git / GitHub

SDS 335: Version Control with Git

Fig. 3: Click on ‘SSH and GPG keys’ on the left-hand side

Fig. 4: Click on ‘New SSH Key’

2.3. GitHub 7

SDS 335: Version Control with Git

(continued from previous page)

HEzDX9UpNrpf1DCuzUH+aP9fkqS/BgMmgjOStObLW4O6vIXoi1Tm/j6NDjrd51B6XwNRZvUarfRM
n6wyBP28K+YzWEabDVucNw0byr9ikGx7xhMtFxwz6k+7AfMepize1zk9WZnp6Z24T+qGU4ulBLIw
3tm+YL8epe6aIFV7J0vV3nb7WG/L0B3NDPl4L wallen@login1.frontera.tacc.utexas.edu

Now you are all ready to interact with the Git repos hosted on GitHub from Frontera.

Tip: A key benefit of Git is that it is platform agnostic. You can use it to interact with the same files from your laptop,
from a lab computer, or from a cluster.

8 Chapter 2. Set up Git / GitHub

CHAPTER

THREE

GET STARTED WITH A NEW REPOSITORY

Let’s create a new directory on Frontera and use Git commands to initialize it as a Git repository.

[fta]$ cd ~/ # cd to your home dir
[fta]$ mkdir my-git-repo/ # make a new dir
[fta]$ cd my-git-repo/ # cd into that new dir
[fta]$ git init # initialize as a git repo
Initialized empty Git repository in /home1/03439/wallen/my-git-repo/.git/

Now, we have the option to use the version control system Git to track all of the files we create in this directory. Not
everything needs to be tracked, but Git will generally be aware of everything in here unless we tell it explicitly to ignore
it.

If we use ls -a, we can see that Git has created a hidden directory called .git:

[fta]$ pwd
/home1/03439/wallen/my-git-repo/
[fta]$ ls -a
./ ../ .git/

Use the find command to get a overview of the contents of the .git/ directory:

[fta]$ find .git/
.git/
.git/description
.git/config
.git/objects
.git/objects/pack
.git/objects/info
.git/hooks
.git/hooks/pre-merge-commit.sample
.git/hooks/pre-rebase.sample
.git/hooks/prepare-commit-msg.sample
.git/hooks/update.sample
.git/hooks/applypatch-msg.sample
.git/hooks/pre-applypatch.sample
.git/hooks/pre-commit.sample
.git/hooks/commit-msg.sample
.git/hooks/post-update.sample
.git/hooks/fsmonitor-watchman.sample
.git/hooks/pre-push.sample
.git/hooks/pre-receive.sample

(continues on next page)

9

SDS 335: Version Control with Git

(continued from previous page)

.git/refs

.git/refs/tags

.git/refs/heads

.git/HEAD

.git/info

.git/info/exclude

.git/branches

Git uses this special sub-directory to store all the information about the project, including all the history of changes to
all files located within the project directory and subdirectories. If we ever delete the .git directory, we will lose the
project’s history. We can check that everything is set up correctly by asking Git to tell us the status of our project:

[fta]$ git status
On branch master

No commits yet

nothing to commit (create/copy files and use "git add" to track)

Although we configured Git to use the default branch name main, it seems that does not work until version 2.28.0! To
rename the base branch, do:

[fta]$ git checkout -b main
[fta]$ git status
On branch main

No commits yet

nothing to commit (create/copy files and use "git add" to track)

Note: If you are using a different version of git, the exact wording of the output might be slightly different. Make
sure you are not using a really old version (< ~2.24) if you want to take advantage of all the features.

3.1 EXERCISE

• Take a few minutes to explore the files and folders in the .git/ directory.

3.2 Tracking Changes

We will use this repository to track some simple code we are about to write. Above, Git mentioned that it did not find
anything to commit. Let’s create a new file to start tracking. Use your favorite text editor to create an easy “Hello,
world!” script in C++:

1 #include <iostream>
2 using namespace std;
3

4 int main() {
(continues on next page)

10 Chapter 3. Get Started with a New Repository

SDS 335: Version Control with Git

(continued from previous page)

5

6 cout << "Hello, world!" << endl;
7 return 0;
8 }

If we now check the status again, Git informs you that there is a new, untracked file. And, it provides some simple
instructions on how to start tracking this file, making it part of the repository.

[fta]$ pwd
/home1/03439/wallen/my-git-repo/
[fta]$ ls
hello_world.cpp
[fta]$ git status
On branch main

No commits yet

Untracked files:
(use "git add <file>..." to include in what will be committed)

hello_world.cpp

nothing added to commit but untracked files present (use "git add" to track)

Use the Git verb add to add the new file to the list of things to track:

[fta]$ git add hello_world.cpp
[fta]$ git status
On branch main

No commits yet

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

new file: hello_world.cpp

3.3 Commit Changes to the Repo

Git now knows that it’s supposed to keep track of hello_world.cpp, but it hasn’t recorded these changes as a commit
yet. To get it to do that, we need to run one more command:

[fta]$ git commit -m "started tracking hello world program"
[main (root-commit) 50b4adc] started tracking hello world program
1 file changed, 8 insertions(+)
create mode 100644 hello_world.cpp

When we run git commit, Git takes everything we have told it to save by using git add and stores a copy permanently
inside the special .git directory. This permanent copy is called a “commit” (or “revision”) and its short identifier is
50b4adc. Your commit will have a different identifier.

We use the -m flag (“m” for “message”) to record a short, descriptive, and specific comment that will help us remember
later on what we did and why. Good commit messages start with a brief (<50 characters) statement about the changes
made in the commit. Generally, the message should complete the sentence “If applied, this commit will” <commit

3.3. Commit Changes to the Repo 11

SDS 335: Version Control with Git

message here>. If you want to go into more detail, add a blank line between the summary line and your additional
notes. Use this additional space to explain why you made changes and/or what their impact will be.

If we run git status now:

[fta]$ git status
On branch main
nothing to commit, working tree clean

3.4 EXERCISE

• Create a Makefile for compiling your hello_world.cpp program. Test to make sure it works. Then, use
git add <file> followed by git commit -m "descriptive message" to commit the Makefile to the repo.
Also, do a git status in between each command.

12 Chapter 3. Get Started with a New Repository

CHAPTER

FOUR

REVIEW THE PROJECT HISTORY

If we want to know what we’ve done recently, we can ask Git to show us the project’s history using git log:

[fta]$ git log
commit 2f7308543b4b339546cc680563606d9c9de87b97 (HEAD -> main)
Author: Joe Allen <wallen@tacc.utexas.edu>
Date: Tue Oct 26 11:32:20 2021 -0500

adding Makefile

commit 50b4adc9086dfe12d5c7ec8e1e2c8b2fd26d5455
Author: Joe Allen <wallen@tacc.utexas.edu>
Date: Tue Oct 26 11:29:10 2021 -0500

started tracking hello world program

The command git log lists all commits made to a repository in reverse chronological order. The listing for each
commit includes:

• the commit’s full identifier (which starts with the same characters as the short identifier printed by the git
commit command earlier),

• the commit’s author,

• when it was created,

• and the log message Git was given when the commit was created.

13

SDS 335: Version Control with Git

14 Chapter 4. Review the Project History

CHAPTER

FIVE

ADD TO THE REPO

Let’s now suppose we want to add another program to this repository. Consider the following short program for esti-
mating the value of pi:

1 #include <iostream>
2 #include <random>
3 #include <time.h>
4 using namespace std;
5

6 int main() {
7

8 int attempts=1000;
9 int tries=0;

10 int inside=0;
11 double ratio=0;
12 srand(time(NULL));
13

14 while (tries < attempts) {
15 tries++;
16 if (pow(rand()/double(RAND_MAX),2) +
17 pow(rand()/double(RAND_MAX),2) < 1){
18 inside++;
19 }
20 }
21

22 ratio=4*(double(inside)/double(tries));
23 cout << "Final pi estimate from " << attempts
24 << " attempts is " << ratio << endl;
25 }

Copy the code above into a new file, e.g. pi_estimator.cpp. Compile the code to make sure it works, then git add
and git commit in sequence.

15

SDS 335: Version Control with Git

5.1 EXERCISE

• The above example uses 1000 random points within a unit square to estimate the value of pi. You feel that 1000
is not very many, and you may get a better estimate with more points. Use your favorite text editor to change
the number of attempts from 1000 to 1000000, then recompile and make sure the code still works. If you are
happy with the result, git add and git commit the changes.

5.2 Check for File Changes

If you made a change in the pi_estimator.pi program, when you run git status it tells you that a file it already
knows about has been modified:

[fta]$ git status
On branch main
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

modified: pi_estimator.cpp

no changes added to commit (use "git add" and/or "git commit -a")

The last line is the key phrase: “no changes added to commit”. We have changed this file, but we haven’t told Git we
will want to save those changes (which we do with git add) nor have we saved them (which we do with git commit).
So let’s do that now. It is good practice to always review our changes before saving them. We do this using git diff.
This shows us the differences between the current state of the file and the most recently saved version:

[fta]$ git diff pi_estimator.cpp
diff --git a/pi_estimator.cpp b/pi_estimator.cpp
index 7244743..2c0f39b 100644
--- a/pi_estimator.cpp
+++ b/pi_estimator.cpp
@@ -5,7 +5,7 @@ using namespace std;

int main() {

- int attempts=1000;
+ int attempts=10000000;

int tries=0;
int inside=0;
double ratio=0;

The output is a bit cryptic because it is actually a series of commands for tools like patch telling them how to reconstruct
one file given the other. If we break it down into pieces:

• The first line tells us that Git is producing output similar to the Unix diff command comparing the old and new
versions of the file.

• The second line tells exactly which versions of the file Git is comparing: 7244743 and 2c0f39b are unique
computer-generated labels for those versions.

• The third and fourth lines once again show the name of the file being changed.

• The remaining lines are the most interesting, they show us the actual differences and the lines on which they
occur. In particular, the + marker in the first column shows where we added lines.

16 Chapter 5. Add to the Repo

SDS 335: Version Control with Git

After reviewing our change, it’s time to commit it:

[fta]$ git add pi-estimator.cpp
[fta]$ git commit -m "increasing the number of attempts"
[main 9a1578f] increasing the number of attempts
1 file changed, 1 insertion(+), 1 deletion(-)

Git insists that we add files to the set we want to commit before actually committing anything. This allows us to commit
our changes in stages and capture changes in logical portions rather than only large batches. As the classic Git saying
goes: Commit early, commit often.

5.3 EXERCISE

• Add another target to the Makefile for compiling the pi_estimator.cpp program. Test it out, then git add
and git commit in sequence.

5.4 Directories in Git

There are a couple important facts you should know about directories in Git. First, Git does not track directories on
their own, only files within them. Try it for yourself:

[fta]$ mkdir directory
[fta]$ git status
[fta]$ git add directory
[fta]$ git status

Note, our newly created empty directory directory does not appear in the list of untracked files even if we explicitly
add it (via git add) to our repository.

Second, if you create a directory in your Git repository and populate it with files, you can add all files in the directory
at once by:

[fta]$ git add <directory-with-files>

Tip: A trick for tracking an empty directory with Git is to add a hidden file to the directory. People sometimes will
label this .gitcanary. Adding and committing that file to the repo’s history will cause the directory it is in to also be
tracked.

5.3. EXERCISE 17

SDS 335: Version Control with Git

18 Chapter 5. Add to the Repo

CHAPTER

SIX

RESTORE OLD VERSIONS OF FILES

We can save changes to files and see what we’ve changed — now how can we restore older versions of things? Let’s
suppose we accidentally overwrite our file:

[fta]$ echo "" > pi_estimator.cpp
[fta]$ cat pi_estimator.cpp # oops!

Now git status tells us that the file has been changed, but those changes haven’t been staged:

[fta]$ git status
On branch main
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

modified: pi-estimator.cpp

no changes added to commit (use "git add" and/or "git commit -a")

We can put things back the way they were by using git checkout and referring to the most recent commit of the
working directory by using the identifier HEAD:

[fta]$ git checkout HEAD pi_estimator.cpp
Updated 1 path from 4afd949
[fta]$ cat pi_estimator.cpp
#include <iostream>
#include <random>
...etc

As you might guess from its name, git checkout checks out (i.e., restores) an old version of a file. In this case, we’re
telling Git that we want to recover the version of the file recorded in HEAD, which is the last saved commit. If we want
to go back even further, we can use a commit identifier instead:

[fta]$ git log
commit 08f311e2e4c9a2c3bc9cc1cb407b6485564e54b3 (HEAD -> main)
Author: Joe Allen <wallen@tacc.utexas.edu>
Date: Tue Oct 26 12:16:05 2021 -0500

added target for pi_estimator to Makefile

commit 9a1578fe2211912528e385937390683ae7582816
Author: Joe Allen <wallen@tacc.utexas.edu>
Date: Tue Oct 26 12:11:59 2021 -0500

(continues on next page)

19

SDS 335: Version Control with Git

(continued from previous page)

increasing the number of attempts

commit 40017224ec1f35c478779f3388b4ba5c96206c41
Author: Joe Allen <wallen@tacc.utexas.edu>
Date: Tue Oct 26 12:04:01 2021 -0500

started tracking pi-estimator program

commit 2f7308543b4b339546cc680563606d9c9de87b97
Author: Joe Allen <wallen@tacc.utexas.edu>
Date: Tue Oct 26 11:32:20 2021 -0500

adding Makefile

commit 50b4adc9086dfe12d5c7ec8e1e2c8b2fd26d5455
Author: Joe Allen <wallen@tacc.utexas.edu>
Date: Tue Oct 26 11:29:10 2021 -0500

started tracking hello world program

[fta]$ git checkout 2f73085 Makefile
now you have a copy the earliest version of the Makefile

Again, we can put things back the way they were by using git checkout:

[fta]$ git checkout HEAD *
back to the most recently committed versions of all files

20 Chapter 6. Restore Old Versions of Files

CHAPTER

SEVEN

LINK A LOCAL REPOSITORY TO GITHUB

Version control really shows its power when we begin to collaborate with other people. We already have most of the
machinery we need to do this; the only thing missing is to copy changes from one repository to another.

Systems like Git allow us to move work between any two repositories. In practice, though, it’s easiest to use one copy
as a central hub, and to keep it on the web rather than on someone’s laptop. Most programmers use hosting services
like GitHub, Bitbucket, or GitLab to hold those main copies.

Let’s start by sharing the changes we’ve made to our current project with the world. Log in to GitHub, then click on
the icon in the top right corner to create a new repository:

Fig. 1: Click ‘New repository’.

As soon as the repository is created, GitHub displays a page with a URL and some information on how to configure
your local repository. Provide a descriptive name for your new repository like pi-estimator (or whatever you want).

Note that our local repository contains our most recent version of pi_estimator.cpp, as well as a history of the
changes of all of the files in the repo. But, the remote repository on GitHub doesn’t contain any memory of any files
yet. The next step is to connect the two repositories. We do this by making the GitHub repository a “remote” for the
local repository. The home page of the repository on GitHub includes the string we need to identify it:

Fig. 2: Follow the instructions for pushing an existing repository.

Back on Frontera in the local Git repo, link it to the repo on GitHub and confirm the link was created:

21

SDS 335: Version Control with Git

[fta]$ git remote add origin git@github.com:wjallen/pi-estimator.git
[fta]$ git remote -v
origin git@github.com:wjallen/pi-estimator.git (fetch)
origin git@github.com:wjallen/pi-estimator.git (push)

Attention: Make sure to use the URL for your repository instead of the one listed here. This will only work if you
correctly set up SSH keys.

The name origin is a local nickname for your remote repository. We could use something else if we wanted to, but
origin is by far the most common choice.

Once the nickname origin is set up, this command will push the changes from our local repository to the repository
on GitHub:

[fta]$ git branch -M main
[fta]$ git push -u origin main
Enumerating objects: 15, done.
Counting objects: 100% (15/15), done.
Delta compression using up to 28 threads
Compressing objects: 100% (13/13), done.
Writing objects: 100% (15/15), 1.67 KiB | 284.00 KiB/s, done.
Total 15 (delta 3), reused 0 (delta 0)
remote: Resolving deltas: 100% (3/3), done.
To github.com:wjallen/pi-estimator.git
* [new branch] main -> main
Branch 'main' set up to track remote branch 'main' from 'origin'.

7.1 Clone the Repository

Spend a few minutes browsing the web interface for GitHub. Now, anyone can make a full copy of my_first_repo
including all the commit history by performing:

[fta]$ git clone git@github.com:wjallen/pi-estimator.git
Cloning into 'pi-estimator'...
remote: Enumerating objects: 15, done.
remote: Counting objects: 100% (15/15), done.
remote: Compressing objects: 100% (10/10), done.
remote: Total 15 (delta 3), reused 15 (delta 3), pack-reused 0
Receiving objects: 100% (15/15), done.
Resolving deltas: 100% (3/3), done.

22 Chapter 7. Link a Local Repository to GitHub

CHAPTER

EIGHT

COLLABORATE WITH OTHERS

A public platform like GitHub makes it easier than ever to collaborate with others on the content of a repository. You
can have as many local copies of a repository as you want, but there is only one “origin” repository - the repository
hosted on GitHub. Other repositories may fall behind the origin, or have changes that are ahead of the origin. A
common model for juggling multiple repositories where separate individuals are working on different features is the
GitFlow model:

Some important definitions (most can easily be managed right in the GitHub web interface):

8.1 Fork

A fork is a personal copy of another user’s repository that lives on your account. Forks allow you to freely make changes
to a project without affecting the original. Forks remain attached to the original, allowing you to submit a pull request
to the original’s author to update with your changes. You can also keep your fork up to date by pulling in updates from
the original.

8.2 Branch

A branch is a parallel version of a repository. It is contained within the repository, but does not affect the primary or
main branch allowing you to work freely without disrupting the “live” version. When you’ve made the changes you
want to make, you can merge your branch back into the main branch to publish your changes. For more information,
see About branches.

8.3 Tag

Git has the ability to tag specific points in history as being important. Typically people use this functionality to mark
release points (v1.0, and so on).

23

https://datasift.github.io/gitflow/IntroducingGitFlow.html
https://help.github.com/articles/about-branches

SDS 335: Version Control with Git

Fig. 1: GitFlow model

24 Chapter 8. Collaborate with Others

SDS 335: Version Control with Git

8.4 Pull Request / Merge Request

Pull requests are proposed changes to a repository submitted by a user and accepted or rejected by a repository’s
collaborators. Like issues, pull requests ach have their own discussion forum. For more information, see About pull
requests.

8.5 Other Considerations

Most repos will also contain a few standard files in the top directory, including:

README.md: The landing page of your repository on GitHub will display the contents of README.md, if it exists.
This is a good place to describe your project and list the appropriate citations.

LICENSE.txt: See if your repository needs a license here.

8.4. Pull Request / Merge Request 25

https://help.github.com/articles/about-pull-requests
https://help.github.com/articles/about-pull-requests
https://help.github.com/articles/licensing-a-repository/

SDS 335: Version Control with Git

26 Chapter 8. Collaborate with Others

CHAPTER

NINE

ADDITIONAL RESOURCES

• Some of the materials in this module were based on Software Carpentry DOI: 10.5281/zenodo.57467.

• GitHub Glossary

• About Branches

• About Pull Requests

• About Licenses

• GitFlow Model

• More on different git workflows

27

https://github.com/swcarpentry/git-novice
https://help.github.com/articles/github-glossary/
https://help.github.com/articles/about-branches
https://help.github.com/articles/about-pull-requests
https://help.github.com/articles/licensing-a-repository/
https://datasift.github.io/gitflow/IntroducingGitFlow.html
https://www.atlassian.com/git/tutorials/comparing-workflows

	The Basics of Version Control
	Set up Git / GitHub
	Git
	EXERCISE
	GitHub

	Get Started with a New Repository
	EXERCISE
	Tracking Changes
	Commit Changes to the Repo
	EXERCISE

	Review the Project History
	Add to the Repo
	EXERCISE
	Check for File Changes
	EXERCISE
	Directories in Git

	Restore Old Versions of Files
	Link a Local Repository to GitHub
	Clone the Repository

	Collaborate with Others
	Fork
	Branch
	Tag
	Pull Request / Merge Request
	Other Considerations

	Additional Resources

